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Abstract— Brief episodes of momentarily falling asleep –
microsleeps – can have fatal consequences, especially in the
transportation sector. In this study, the EEG data of eight
subjects, while performing a 1-D tracking task, were used to
predict imminent microsleeps. A novel algorithm was developed
to improve the accuracy of microsleep identification from
two independent measures: tracking performance and face-
video. The uncertain labels of gold-standard were then pruned
out. Additionally, the state of microsleep at 0.25 s ahead
was continuously predicted. Log-power spectral features were
then extracted from EEG data. The most relevant features
were selected by mutual information. Leave-one-subject-out was
performed to test the classifier on an independent subject and
this procedure was done for all the subjects. Two oversampling
methods, synthetic minority oversampling technique (SMOTE)
and adaptive sampling (ADASYN), were utilized to improve
the training in the presence of imbalanced data. The best
average area under the curve of receiver operating characteris-
tic (AUCROC) of 0.90 was achieved using SMOTE oversampling
over a 5.25 s window length, with a corresponding geometric
mean (GM) of 0.74. ADASYN oversampling achieved the best
sensitivity of 0.76 (cf. 0.70 for SMOTE), but with a lower
specificity of 0.77 (cf. 0.86 for SMOTE).

I. INTRODUCTION

Microsleeps are brief episodes (∼0.5–15 s) of loss of
consciousness in which a person unintentionally stops re-
sponding and seems to momentarily fall asleep [1], [2].
Microsleeps are usually associated with behavioural sleep
cues such as slow eye closure, droopy eyes, head nods, and
increased duration of eye blinks [1], [3]. This phenomenon is
a safety hazard to active and monotonous task operators [4],
such as truck drivers, pilots, and air traffic controllers.
Vanlaar et al. used a public opinion poll to collect data
from 750 Ontario drivers in which 58% of participants
admitted to having driven while fatigued or drowsy, and 14%
acknowledged experiencing nodding off or falling asleep
while driving [4]. Sleep related motor vehicle accidents
have been estimated to account for 2% (Norway) to 25%
(Australia) of car crashes [5].
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Peiris et al. [2] showed that non-sleep-deprived subjects
experienced frequent microsleeps while conducting a 1-hour
1-D continuous task with an average rate of 15.2 (0.0–
72.0) h−1 and average duration of 3.2 (1.8–4.6) s. Poudel
et al. [6] found that propensity of falling asleep increases
with sleep restriction. However, they found no correlation
between the number of microsleeps when normally rested
and after sleep restriction [7]. They also found that normally-
rested subjects had 11.4 (0–85) microsleeps on a 20-min
2-D tracking task with a mean duration of 2.8 s. These
results highlight that even healthy normally-rested people are
susceptible to microsleeps. They also highlight the benefits
of being able to predict microsleeps and being able to prevent
fatal accidents, especially in the transportation sector.

EEG-based detection of microsleeps has been investi-
gated [3], [8], [9]. Peiris et al. extracted power spectral fea-
tures, fractal dimension, approximate entropy, and Lempel-
Ziv complexity of EEG [8]. They used PCA to create meta-
features and stacking of 6 linear discriminant analysis (LDA)
classifiers to detect microsleeps. All of the principal com-
ponents (PCs) were fed to the classifiers, as overfitting
was not observed. Their best results of AUCROC = 0.86,
Pearson’s correlation coefficient (φ) = 0.39, and AUCPR =
0.43 were achieved by using spectral features only. Davidson
et al. [3] used the same procedure, but with long-short-term-
memory (LSTM) recurrent neural networks. PCA was used
to reduce the number of features to 30 to avoid overfitting
and reduce computational complexity. They were able to
achieve φ = 0.38, AUCROC = 0.81, and AUCPR = 0.43.
Ayyagari et al. [9] used the same features and applied them
to echo state networks with leaky neuron. They achieved
φ = 0.51, sensitivity (Sn) = 0.85%, specificity (Sp) = 0.94,
and selectivity (Sl) = 0.53 with stacked generalization. All of
the aforementioned studies used EEG segments of 2 s with
50% overlap.

The previous studies all showed promising results in terms
of detection of microsleeps. Microsleeps were defined as a
flat response in tracking together with eye-closure identifica-
tion independently from face-video. Logical operators were
used to combine tracking performance, and the expert rated
face-video. This however introduced mistakes into the gold-
standard. For instance, a person might exhibit eye-closure
leading to a video-lapse rating from an expert, while tracking
performance was satisfactory. This situation requires a log-
ical AND to correctly identify microsleeps. However, there
are other situations where logical OR is needed to correctly
identify microsleeps. Therefore, the term microsleep is more
centred on the subject’s performance. We have decided to
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redefine the gold-standard with more strict measures so as
to increase the accuracy of microsleeps. In addition, previous
research focused on the detection of microsleeps. To the best
of our knowledge, prediction of microsleeps has not been
investigated in the literature. In the current study, our aim
was to predict the occurrence of microsleeps.

The aim of this work was to (1) improve accuracy of the
behavioural gold-standard for microsleeps, and (2) carry out
preliminary work toward prediction.

II. METHODOLOGY

A. Data

Fifteen healthy non-sleep-deprived volunteers were re-
cruited. No neurological or sleep disorder was reported by
subjects. The average sleep duration for the previous night
was 7.8±1.2 h [2].

Each subject took part in two sessions of one hour to
perform a 1-D random preview tracking task. This task was
to keep the tracking cursor as close as possible to the pseudo-
random target. EEG, tracking performance, and facial video
of subjects were recorded while performing the task. EEG
was recorded with sampling frequency of 256 Hz from 16
channels placed according to international 10-20 system,
namely Fp1, Fp2, F3, F4, F7, F8, C3, C4, O1, O2, P3, P4,
T3, T4, T5, and T6. Video of facial behaviour features was
recorded at 25 fps. Tracking performance was sampled at
64 Hz.

B. EEG Preprocessing

Following band-pass filtering of the EEG between 1 Hz
and 45 Hz, artefact subspace reconstruction (ASR) [10] was
employed to remove artefacts with z-score over 5. ASR
finds a clean template of data and uses that to find and
remove artefacts in the rest of EEG. However, EEG is non-
stationary and therefore it might not be appropriate to find
a clean portion of 1-hour data and use it to find artefacts
in the rest. Therefore, we segmented the EEG into 2-min
epochs with 50% overlap. ASR was then applied to each
epoch independently. Clean data was found within each
epoch which was then used to clean the same epoch. The
epochs were then concatenated together to form a cleaned
set of original data. In this process, the overlapping parts
of consecutive epochs were averaged to avoid discontinuity.
Muscle artefacts were removed from EEG using canonical
correlation analysis [11].

C. Improving the Gold-standard and Microsleeps

Identification of microsleeps was done by fusion of in-
dependent measures of video analysis and tracking perfor-
mance. The rating of behavioural clues was done by three
experts using video recordings without knowledge of the
tracking performance. This analysis was done based on
6-scale ratings: alert, distracted, forced eye closure, light
drowsy, deep drowsy, and microsleep [8].

Peiris et al. [2], [8] analysed tracking performance to
find flat responses longer than a specific time span. The
gold-standard was then estimated by applying a logical

operator, i.e., AND or OR, to the video ratings and tracking
analysis. This approach, however, does not take the transition
from responsive to microsleep, or vice versa, into account.
Furthermore, flat tracking responses might have been due
to the slow target velocity. In such situation, a logical OR
might introduce false microsleeps into gold-standard while
the participant was in fact responsive. In order to reduce the
uncertainty of the gold-standard, we developed a rigorous
algorithm using more strict measures to account for slow
tracking velocity, transition from one state to another, and
uncertain parts of gold-standard.

The first step of tracking analysis was to find any consis-
tent lead or lag between the tracking and target using cross
correlation and compensate it. This is due to the fact that
the subjects could have seen the preview of the following
8 s of target [8] and therefore a small lead or lag between
tracking and target might have been introduced. The next
step was to find the responsive parts of tracking where the
subject was tracking the target accurately. At first, fractions
of target with slow velocity were temporarily removed from
the analysis, since it was inaccurate to estimate whether or
not the subject was actually tracking while the target was
moving slowly. The absolute error between the target and
corresponding tracking output was then computed using a
moving window of 2 s. Windows with a mean absolute error
less than 9.6 mm/s were added to a responsive template. To
account for abrupt attention lapses, consecutive responsive
windows in the template that were closer than 0.5 s were
merged. Next, the slow velocity parts of data was analysed.
A slow velocity window was considered to be responsive if
the length of such window was less than 2 s and the subject
was tracking accurately 4 s prior and after that.

The parts of the tracking task with a mean absolute error >
3 cm/s for longer than 1 s were labelled ‘deviated-regions’.
Flat-spots were also defined as the regions of tracking task
that velocity of tracking drops below 1.1 mm/s while the
target’s velocity is higher than 2.6 mm/s (10th percentile of
target velocity). In addition, a flat-spot must last for at least
1 s and the mean absolute deviation from the target be larger
than 1.5 cm. Slow velocity regions of the target were not
considered in the analysis of either flat-spots or deviated-
regions.

The gold-standard was then formed by fusion of video
ratings, responsive template, deviated-regions, and flat-spots.
The gold-standard corresponds to ‘responsive’ if the subject
is tracking, regardless of video ratings. As a result, respon-
sive templates were directly added to the gold-standard.
Microsleeps were defined as non-tracking (i.e., union of
deviated-regions and flat-spots), in conjunction with a video-
rating of deep drowsy or lapse. The remainder of the gold-
standard was defined as ‘uncertain’ and pruned out. Figure 1
illustrates the gold-standard, tracking, and target.

D. Feature Selection and Reduction

Power density estimation was done using Welch’s
method [12] based on 2-s windows and 75% overlap. The
log-power of various frequency bands of EEG were ex-
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Fig. 1. Illustration of gold-standard with respect to target and tracking.
The states of gold-standard are uncertain (U), responsive (R), and mi-
crosleep (M).

tracted, namely: delta (1–4.5 Hz), theta (4.5–8 Hz), al-
pha1 (8–10.5 Hz), alpha2 (10.5–12.5 Hz), alpha (8–12.5 Hz),
beta1 (12.5–15 Hz), beta2 (15–25 Hz), beta (12.5–25 Hz),
gamma1 (25–35 Hz), gamma2 (35–45 Hz), gamma (25–
45 Hz), overall (1–45 Hz). This led to 12 features per
EEG channel, and a total of 192 features per epoch. Due
to the large number of features per epoch, the curse of
dimensionality might exist. To overcome this, we used a
greedy forward feature selection algorithm based on mutual
information of features and the class labels [13]. The aim of
this procedure was to add the most informative feature with
respect to the gold-standard at each step. Mutual information
can be written as follows:

I(f,G) = H(G)−H(G|f) (1)

where f is a feature set, G is the gold-labels. H(G) is the
entropy of gold-standard and is defined as

H(G) =− ∑
G∈{R,M}

P(G) log(P(G)) (2)

where P(G) is the probability function of gold-standards.
H(G|f) is the conditional entropy and is defined as

H(G|f) =− ∑
G∈{R,M}

P(G|f) log(G|f). (3)

Features were assumed to have normal distribution and
joint distributions have full covariance matrix. A ‘greedy
method’ was used to add the most informative feature at
every iteration. At every iteration, the mutual information
of union of selected features and each of the remaining
ones was calculated. The feature resulted in the highest
mutual information was added to the selected features. This
procedure continued until a stopping criterion was met, such
as maximum number of features or the improvement in
the mutual information. In this study, we chose 40 as the
maximum number of features to be selected.
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Fig. 2. Correspondence of gold-standard and EEG segments.

E. Classification

We evaluated the state of the gold-standard every 0.25 s
and compared it to the EEG segment τ prior to the gold-
standard sample (Figure 2). The minimum duration of mi-
crosleep is defined as ∼0.5 s, so the gold-standard at 4 Hz
does not miss any microsleeps. A τ of 0.25 s corresponds to
one-step-ahead (0.25 s) prediction of the gold-standard.

Classification was done using a single LDA. Such a
simple classifier was chosen to investigate the efficacy of
prediction with a simple method before exploring more
complex classifiers. LDA also ties covariance matrices for
both classes which avoids singularity, especially when the
number of microsleeps might be low. The training phase was
done based on nested 5-fold cross-validation on the number
of features and window length of EEG segments. The optimal
classifier was then applied to the independent test data to
measure the performance of the system.

To reduce the effect of imbalanced data on the training
of the classifier, two oversampling methods, synthetic mi-
nority oversampling (SMOTE) [14] and adaptive synthetic
sampling (ADASYN) [15], were applied to the training data,
while the validation set was unchanged. The results of such
methods were compared with training without oversampling.
AUCPR was used to select the best model for each train-
ing set, as the microsleep dataset is substantially imbal-
anced [16]. For each window length, the simplest model with
only one feature was initiated. At every iteration, one feature
was added to the model and mean AUCPR of cross-validation
was examined until there was no further improvement on
three consecutive iterations. This process was carried out
for all window lengths and the model corresponding to the
highest AUCPR was selected.

III. RESULTS

Of the 15 participants in this study, our analysis was
limited to 8 who experienced at least one microsleep in
both sessions. Evaluation of microsleep prediction was done
by leaving the whole data of one subject (both sessions)
for testing, while training was done on the other seven.
This process was repeated eight times and the average of
performance measures were computed.

The new gold-standard had an average participant respon-
sive time per 60-min of 35.8 (10.8–47.7) mins and definite
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TABLE I
PERFORMANCE OF MICROSLEEP PREDICTION.

No resampling SMOTE ADASYN
AUCROC 0.90 0.90 0.90
AUCPR 0.38 0.36 0.34
GM 0.58 0.74 0.70
Phi (φ ) 0.33 0.33 0.29
Sensitivity 0.46 0.70 0.76
Specificity 0.94 0.86 0.77
Precision 0.37 0.27 0.22

microsleep time of 2.2 (0.1–8.4) mins. The remainder of the
gold-standard was marked as uncertain. Definite microsleeps
occured at a rate of 15.3 (2–30) h−1.

The performance of microsleep prediction is presented
in Table I. Prediction using ADASYN gave the highest
sensitivity but at the cost of low precision. On the other hand,
maximum specificity (0.94) was achieved without resampling
but with a low sensitivity (0.46). It must be noted that
precision, φ , and AUCPR depend on imbalance ratio [16]
of the gold-standard which was not consistent across the
subjects. As a result, the average value of such measures may
not be accurate. The geometric mean (GM) is based on both
sensitivity and specificity at the operating threshold of the
classifier which might be a better measure of performance.
Nevertheless, selection of the best classifier depends on the
application and the relative importance of high sensitivity
versus high specificity.

The number of features needed for classification and the
best EEG window length were chosen based on each training
set and oversampling method. The best model without over-
sampling had 37 features on average and an EEG window
length of 5.5 s. The SMOTE-based classifier had less features
on average (40) and an optimal EEG window length of
5.25 s. A minimum number of features was needed for the
classifier with ADASYN (40), with a corresponding EEG
window length of 6.0 s.

IV. CONCLUSION

We investigated continuous prediction of microsleep in
a one-step-ahead (0.25 s) configuration. Using log-power
spectral features, mutual information feature selection, and
a single LDA as classifier, we were able to achieve an
AUCROC of 0.90, but a relatively low sensitivity. However,
applying oversampling methods to the training substantially
improved sensitivity, with a small drop in specificity. By
applying SMOTE at the training stage, we were able to
achieve the same AUCROC with moderate sensitivity and
specificity.

Future work will be centred on incorporating more com-
plex classifiers and features. LSTM and hidden Markov
network methods can be used to integrate the dynamics of
features to increase the prediction performance. Other fea-
tures such as complexity measures, time-frequency domain
features, and cortical connectivity [17] might also increase
accuracy of prediction of microsleeps.
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